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The partial conductivity of electrons in Na SO was about two orders of

magnitude less than the total conductivity whiie electron hole conductivities
are considerably smaller than the electron conductivities. Thus, t is of the

order of 10 in pure Na SO at 900 C.

0
The introduction of NiO and Fe 0 into Na SO4 at 900 C does not changesignificantly the total conductivitie' or the 24 electronices o th _Drtial eetoi

conductivities except at a concentration of 10 mole % Fe 0 where the
electron and electron hole conductivities become of the same order of
magnitude. At other concentrations of NiO and Fe 0 the salt solution has

23
electrons as a major minor carrier. This is somewhat surprising as one might
generally anticipate an increase in the electron hole conduction with the
introduction of multivalent ions of nickel and iron.

A

Hot corrosion studies on pure nicke 1under various heights of Na SO were
o -16 '2 4

carried out at 900 C at aNaZO = 6.3xi0 . The kinetics of the hot corrosion
process increased as the height of the Na SO4 was increased from 0.5 cm to 2.0
cm. These results are quite informative in that they eliminate a number of
possible reaction controlling steps. Further studies in this regime may aid
in elucidating the reaction controlling step(s) for this process of hot
corrosion.
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Introduction

The mechanism of hot corrosion is accepted as that of a dissolution process

of protective oxides in a neighboring liquid phase, generallv, but not always,

considered to be Na 2so 4 (other liquid salts create the same type of behavior).

The reactions involved, considering only the formation of metal oxides, requires

*t transport of oxygen through the liquid salt phase. Thus, at least in the

- initial stages of corrosion, one of the interface reactions and/or diffusion in

the boundary layers and/or diffusion through the bulk salt must control the

process. After a certain thickness of reaction product accumulates at the

liauid-alloy interface it is then logical to anticipate control of the corrosion

process to be reactions that involve this scale.

To aid in the overall understanding of the hot corrosion process

rdetermination of a number of electrical transport processes in the NaSO, phase

have been undertaken. The experiments conducted are described in the following

text and the experimental results obtained during the first year of study are

presented.
r

Experimental

A variety of electrical transport experiments were conducted. These

include the measurement of the total electrical conductivitv of pure Na ,S0, it it

900°0 C under various SO + 0 atmospheres and determination of the partial
2 2

* conductivities of electrons ano electron holes utilizing a Wagner-Hebb type

polarization cell for pure and "doped" Na SO also at 90oC under S o , + 0,

atmospheres of various concentrations.

The crucible utilized for these experiments was pure gold which is

relatively Inert to the aggressive salt. Gold electrodes were also employed.

*. *tmospheres of S O,, + 0 emploved to vary the activity of the Na,(O in the me't

2"
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were obtained from gas mixtures or by flowing an inert gas, He, over ZnSO 4 I!ZnO

mixtures held at a constant temperature in a furnace separate from the cell

furnace. A platinum wire screen placed above the melt was utilized to catalyze

the reaction. Both D.C. and A.C. measurements were made but most of the work

reported herein relate to D.C. measurements since these appeared to be most

stable and reproducible.

The cell constant was obtained by measuring a standard KCI solution at room

temperature under identical conditions to those utilized for the cell at the

high temperature operation.

In addition to the above electrochemical measurements high temperature,
0

900 C, hot corrosion studies were begun on metal samples covered by a certain

thickness of liquid Na2SO . The initial experiments were carried out in silica
24

crucibles with pure nickel as the metal phase. The nickel was oxidized at

ItCflo0C for about 12 hours. One surface of the oxidized sample was polished to

Obtain a olean metal surface while the other surfaces were permitted to retain

their oxide laver. The oxide surfaces were then coated with a thin gold laver

in order to protect these surfaces from reaction with the Na2SO4 .

Weight changes during the hot corrosive process were followed by an

automatic recording balance. The activity of Na 0 was maintained at about

,.3×II1 by a flowing gas stream of 02 S ol .

Results and Discussion

Electrical Conduct ivi ties

The rotal lectrical conductivitv of pure Na.i0n as a finction of the
.4 4

activity f Na <O in the melt at 1173 K is depicted in ';'Igure I. The

conductivitie, at lI) and 1IM0 Hz differ from the D.C. value- obtained

- indicating that Polarization may he present at the electrodes. However, the %

- - .
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A.C. values measured were not nearly as stable or reproducible as the D.C.

values. Hence, at this time we relate our subsequent calculations to the total

D.C. conductivities. Figure (la) displays this conductivity on a more sensitive

conductivity scale. From this figure one notes a small but definite decrease in

the conductivity as the activity of the Na 20 decreases. We are presently giving

thought to thi; decrease in order to attempt an explanation of the observed

trend.

From Wagner-Hebb types of polarization measurements on pure Na 2SO4 at 1173

K the partial conductivities of electrons and electron holes were calculated and

are depicted in Figure 2. It can be seen that electron conduction in pure

Na 2SO 4 is considerably larger than that of electron holes. Thus, for pure

Na2 SO4 the major minor conductors are electrons. The calculated transport

number of the electronic species are depicted in Figure 3 from which it can be

seen that electron transport numbers are of the order of 10- 2 while that of the

electron holes are of the order of l-2x10 . Thus, a relatively large amount of

the transport of charge is electronic in nature in pure Na SO i.e. of the
2 4'

order of 1 part in a hundred parts. The transport numbers of electronic species

in molten salts have not been measured to any great extent but the few that have

been measured are smaller than that determined in this study, e.g. reference I

gives a value of about 3x10 - 3 for electrons in the molten eutectic of LiCI-KCI

at 450 C.

In view of the fact that nickel based alloys are frequently utilized for

applications (2-11) where hot corrosion may occur electrical conductivities and

Wagner-Hebb type polarization measurements of Na 2So 4 with additions of NiO have

been made. The total conductivities of these mPlts are depicted in Figure 4

along with that of pure Na2SO4 . It should be noted that the 10 mole % Nin

solution is in excess of the snlubilitv limits as determined by Gupta and Rapp

% 
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(12) except for the extreme ends of the activities of Na 2 s04 thus, the central

section of this conductivity curve represents the ionic solution conductivity

plus the contribution, if any, of the suspended solid phase. The conductivity

scale utilized in Figure 4 is rather amplified so that the trends of the

conductivities may be observed.

From these results one notes that there is no "massive" change of

conductivities of NiO "doped" Na 2SO 4 as compared to pure Na 2SO . Of course, the

levels of NiO additions are not excessive, except for the 10 mole % NiO case, so

that major changes in total conductivities are not expected. However, there is

-8
a trend in the conductivities to minimize in the neighborhood of a Na 0 = 10 to

10 2
10-

. This is in the neutral region between acid and basic fluxing of the NIO

and is similar to the solubility curve of NiO determined by Gupta and Rapp (12).

In general, one may note that the results obtained do indicate that the

mobilities of the ions resulting from the dissolution of NiO are not

significantly different from the ions present in the Na2SO melt.

The partial electronic conductivities observed for the NiO doped Na 2SO 4 are

depicted in Figures 5 to 7. These have been plotted as separate figures since a

single figure plot would show much intermixing of values. Basically, these
">,

results show that electron conductivities remain higher than the electron hole

conductivities at all concentrations of NiO and throughout the entire range of

Na 0 activities. This is somewhat surprising since one would anticipate that

the introduction of nickel ions into the melt would tend to increase the

2+ 3+ '"

electron hole conduction via the exchange of electrons between Ni and Ni

ions. Such apparently does not occur and the postulate that the presence of

nickel in Na SO solutions would enhance the total electronic conductivitv and
2 4

more specifically the electron hole conduction is certainly not in accord with

these results.

P-
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Utilizing the total conductivities and the partial conductivities one may

calculate the transport numbers of the electronic species in these doped

solutions. These values are plotted in Figures 8 to 10. It can be seen that

the electron transport numbers remain consistently higher than those of the

electron holes in accord with the partial and total conductivities depicted

previously. Again, the effect of the dissolution of the NiO is minimal upon the

electron hole transport.

The effect of Fe 0 dissolved in Na SO was also studied. Figure 11
2 3 2 4

depicts the total conductivities at various concentrations of Fe2 0 while

Figures 12 to 14 depict the partial electronic conductivities. Electron

conductivities are considerably higher as compared to electron hole -'.-

-2conductivities except for the 10 mol % Fe 0 concentration. This is seen more
2o3

clearly in Figures 15 to 17 which show the calculated transport numbers of these

solutions. It is noted that at relatively low activities of Na20 (10 -

-1510 - ) that the electron conductivity is considerably enhanced as compared to

higher activities indicating that the concentration and/or mobilities of the

electrons is increased significantly in this activity region. Indeed, the total

conductivities, Figure 11, are also increased considerably in this region

indicating that both ionic and electronic transport are enhanced. Such may

relate to dissolution products of the Fe 0 in the Na SO melt.
2 3 2 4

The above represents at this point in time the electrochemical results
%

obtained. Interpretation(s) of these results are presently under consideration.

Hot Corrosion of Pure Ni as a Function of Na SO Heigth
2 4 Hlt

As noted in the experimental section of this report nickel samples,

prepared to expose one metallic surface to an overlying Na 2SO 4 melt, were tested

o0 -16at 900 C at an activity of Na20 of about 6.3xlfl The results nbtained are

2.' .
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shown in Figure 18. It can be seen that the gain in weight per unit area of

sample increases as the height of the melt above the metal increases. Thus.

diffusion through the entire distance of the overlying Na SO is not rate
2~4

determining for this corrosion process.

Figure 19 shows a typical SEM micrograph of the layers formed on the nickel

under the conditions of the experiment. Both NiO and Ni S are present in a

duplex type scale indicating that the sulfur potential is sufficient at the

scale - Na SO interface to form the Ni S even though the gaseous atmosphere
2 4 3-2

is such so as to establish an acid fluxing Na 2 SO 4 melt. Figure 20 is an x-ray

map of the micrograph shown in Figure 19 and reveals the distribution of the

sulfur in the various phases present. Again, it is apparent that the central

structure is a high sulfur containing compound.

The differences seen in weight gain as a function of height of Na 2SO 4 are

worthy of further discussion. If one considers the possible rate controlling

steps in this process and considers whether the step is altered by the height of

the Na2so4 layer one is led to the following conclusions: LV

L'- Effect o of a .
$ Step thicker Na2SO4 layer",,

i. Diffusion flux through the Na 2So4 thickness Decrease

2. Diffusion flux through boundary layer at gas - No change, essentiallv

Na SO
2 4 interface

3. Diffusion flux through boundary layer at No change, essentiallv

scale - Na SO interface (see further discussion)
2 4

4. Interface reaction at the gas - No change, essentiallv

Na 2SO4 interface

24rv-5. Interface reaction at the Na2SO 4 - No change, essential lv

scale interface (see further discussion)

6. Oxidizing potential gradient from gas - Na SO Decrease

interface to scale - Na 2SO 4 interface

%
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7 Thickness cf reak- i -n product on metal \r charze r I 0

Each of the above steps either decrease or probabv n -)riot

appreciably when the height of Na SO 4 above a corroding saimrle is incr~-i .

Yet experimentally the results obtained indicate an increase in !,)t e t !t

and the "long-time" reaction rate although the "long time" ratps are-

well-defined. Thus, one must search for another parameter that may re't- r"

control of the corrosion process.

If one accepts that dissolution of the scales occurs during the

hot-corrosion process, and such is certainly supported bv many studies, then me

is led to conclude that the capacity of the NaSO4 melt to accept a soluble

product is increased by the increased amount of Na 2SO 4 present to establish a

greater thickness of the salt. Thus, a larger amount of nickel compounds may 2o

into the melt without approaching saturation and the necessitv of precipitation.

Hence, steps 3 and 5 in the above listing may change somewhat and may be relatedl

to the changes in the kinetics that were detected in these experiments.

Therefore, it appears that the parameters which determine the dissolution

process of the scale may be the most important in this corrosion process. Such

parameters are the interface reaction, diffusion of reactants to the reaction

front, diffusion of products to the bulk solution, etc. Further efF)rts will

relate to attempting a clarification of these probable rate-controlling

mechanisms.

I.I
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